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Abstract
A recently proposed test for chaos (Gottwald G A and Melbourne I 2004 Proc.
R. Soc. A 460 603–11) is employed to probe the Hamiltonian dynamics of a
one-dimensional anharmonic oscillator lattice. For a homogeneous (uniform
mass) lattice in the weakly chaotic regime and for a heavy impurity embedded
in the lattice, the results stemming from the time record of the position and
momentum of a single oscillator in the former case, and for that same variables
corresponding to the impurity in the latter, are inconclusive to determine the
dynamical regime of the system. This seemingly odd behavior has its origin
in the insufficient time-series length employed. Nevertheless, for both cases
the necessary time record length needed to obtain the correct result renders
the test impractical. In particular, for the second case, specially in the large
system size limit (which is the physically relevant one due to its connection
with Brownian motion), the estimated length of the position time series required
by the test to correctly classify the signal is beyond the reach of present-day
computer capability. Thus, our results indicate that the proposed test, for the
aforementioned cases of Hamiltonian chaos, affords no clear advantage over
conventional phase-space reconstruction methods.

PACS numbers: 05.45.Tp, 05.45.Jn, 05.45.Pq, 05.40.Jc

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A long-standing fundamental issue in the theory of time-series analysis is to determine whether
a complex time series is regular, deterministically chaotic or random. Recently, a test, termed
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the 0–1 test, for distinguishing regular from chaotic dynamics in deterministic dynamical
systems has been proposed [1]. The input is the time series of a relevant variable and the
output is 0 or 1, depending on whether the dynamics is regular or chaotic, respectively. The test
has been applied successfully to the Hénon–Heiles and Lorenz systems, being found useful
as a marker of the transition from regularity to chaos [2]. More recently, positive results of
its application to simple experimental time series have been reported [3]. The aforementioned
results seem to support the claim made in [1] that the dimension of the dynamical system
and the form of the underlying equations are irrelevant, since the 0–1 test does not require
the phase-space reconstruction of conventional nonlinear time-series methods [4]. However,
mainly from the analysis of the logistic map previously studied in [1], it was also claimed
that the 0–1 test is not useful for exploratory purposes, specially for the analysis of data with
little a priori knowledge of the underlying dynamics [5]. For this particular system these
assertions later on proved to be largely unjustified since they stemmed from a misapplication
of the test [6]. Therefore, it is still important to continue exploring the range of applicability,
and possible hitherto unacknowledged limitations, of the 0–1 test in order to avoid such
misinterpretations.

The available evidence is consistent with the claim that, as long as the system under
study is truly deterministic, the 0–1 test is valid. A system that fulfills the aforementioned
condition and successfully studied by means of the 0–1 test in [1] is that described by the
driven and damped Kortweg–de Vries (KdV) equation. Notwithstanding it formally describes
an infinite-dimensional dynamical system, it is now well accepted that the chaotic solutions
of such systems evolve in an effective manifold (attractor) of finite Hausdorff dimension
[7]. Therefore, further research is needed to support the claim that the 0–1 test effectively
characterizes the dynamics of high-dimensional systems [1]. The choice of the most adequate
model system wherewith to explore the validity of the aforementioned claim is afforded by the
observation that the KdV equation is an integrable approximation to a discrete many-degree-
of-freedom dynamical system, namely the Fermi–Pasta–Ulam (FPU) anharmonic oscillator
lattice [8–10].

In this work we apply this technique to artificial (computer-generated) time series derived
from the position and momentum of a single oscillator in a FPU lattice to asses its usefulness in
identifying signals of unmistakable dynamical origin to establish if the 0–1 test can be applied
with enough confidence to signals for which no a priori information of its dynamical origin,
either regular or chaotic, is available. Further insights about the range of applicability can be
obtained if structural changes are introduced in the lattice, i.e. if a heavy impurity is coupled
to the oscillator chain. The importance of this modification stems from the fact that a heavy
particle coupled to a many-degree-of-freedom system, under conditions independent of the
regular or chaotic character of the latter, performs Brownian motion (see [11] and references
therein). Now, some time ago it was proposed that from the time record of the position of a
Brownian particle (BP), which is an experimentally accessible variable, it could be possible
to detect the chaotic dynamics of the fluid wherein the particle is suspended by means of
nonlinear time-series methods [12]. However, it was shown later on that such methods render
inconclusive results for both microscopic chaos detection [13] and randomness versus chaos
distinction [14]. Since a colloidal particle embedded in a fluid is, in principle, a deterministic
dynamical system governed by Newton’s equations of motion, the 0–1 test can be applied to
the experimental records of the position of a BP, as well as to the computer-generated position
time series of the heavy impurity in the large system size limit of the FPU lattice wherein it
is embedded. The proposed application affords a novel way to corroborate the claim made in
[6] that this technique avoids certain well-documented drawbacks of conventional nonlinear
time-series methods [4].
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This paper is organized as follows. In section 2 we briefly review the 0–1 test and
the relevant details of its implementation. Section 3 describes the employed model and the
relevant details of its numerical integration. Sections 4 and 5 present the results for two
different dynamical regimes of the FPU model. In section 6 we investigate the time-scale
separation effect induced by embedding a heavy impurity in the lattice. The large system size
limit of the variable that conveys the result of the 0–1 test obtained from the position time
series of the heavy impurity and the comparison with the results obtained from an experimental
record of the position of a BP are given in section 7. In section 8 we discuss the previous
results and present our conclusions.

2. The 0–1 test for chaos

The employed method starts with a finite data set {φ(tα)}Nα=1 sampled at discrete times
tα ≡ ατ , with sampling time τ . Here φ(tα) is a one-dimensional observable obtained from
the underlying dynamics. First, for a given c ∈ �, define

ξ(tα) =
α∑

j=1

φ(tj ) cos(jc)

η(tα) =
α∑

j=1

φ(tj ) sin(jc),

(1)

where α = 1, 2, 3, . . . . Next, for one of the above variables, say ξ(tα), the mean square
displacement is computed as

M(tα) = lim
N→∞

1

N − α

N−α∑
j=1

[ξ(tj+α) − ξ(tα)]2. (2)

The asymptotic growth rate of the mean square displacement can be defined as

K = lim
α→∞(log M(tα))/ log tα, (3)

which is computed, by performing a least-squares fit of log M(tα) versus log tα , in the range
1 � α � N1 for a choice of N1 such that 1 � N1 � N and N1 = N /10. In the definition
of the asymptotic growth rate, equation (3), the claim is made that ξ(tα) has the diffusion
properties of a Brownian-like motion when the dynamics of φ(tα) is chaotic [1]. Then
K ≈ 0 stands for regular dynamics and K ≈ 1 implies chaotic dynamics. To avoid possible
resonances between the frequencies of the underlying dynamical system and c we compute
K for 100 random values of the frequency c drawn from the interval (0, 2π ), since the test is
2π -periodic in c. The final K value is then taken as the median of the computed set [15].

The functions ξ(tα) and η(tα) in equation (1), together with θ(tα) ≡ αc, can be viewed as
a component of the solution to the skew product system:

θ(tα+1) = θ(tα) + c

ξ(tα+1) = ξ(tα) + φ(tα) cos θ(tα)

η(tα+1) = η(tα) + φ(tα) sin θ(tα),

(4)

driven by the dynamics of the observable φ(tα). Here (θ, ξ, η) represents the coordinates on
the Euclidean group of rotations θ and translations (ξ, η) in the plane [17, 18]. In [1] it was
argued that inspection of the dynamics of the (ξ, η)-trajectories provides a quick and simple
visual test of whether the underlying dynamics is regular or chaotic, and so it will be employed,
along with the K value, to assess the applicability of the 0–1 test to study Hamiltonian chaos.
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Before continuing we have to mention that the above methodology to obtain the K value
is described as the regression method in [16], where a modified version of the 0–1 test, termed
the correlation method, has been introduced. In the latter the K value is computed as a
correlation coefficient of the vectors {α}N1

α=1 and {D(tα)}N1
α=1, where D(tα) is a modified mean

square displacement. We deemed it unnecessary to adopt this new approach for a number of
reasons. The main one is that the correlation method renders essentially the same results as
the original one. The regression method (the original 0–1 test), at least for the studied cases
in [1, 15], correctly classifies the studied signals. No single instance of a misclassification
rendered by the regression method and later corrected by the correlation method is presented
in [16]. Furthermore, the aforementioned comparisons are made with a short time-series
length (2000 data points) and only for data series corresponding to the logistic map. Now,
as we will see in sections 6 and 7, for the herein considered systems a proper assessment of
the performance of the 0–1 test can only be achieved with very long time series. But in [16]
no results are presented wherewith the correlation method reaches the asymptotic K value
in a shorter time (measured by the time-series length) than the regression method. The fact
that the performance of both methods depends on the validity of the limit N1 � N could
possibly indicate that a sufficiently long time series has to be employed to correctly classify
a given signal, irrespective of the employed method to obtain the K value. So far there is
no empirical evidence that contradicts this last statement, although we also acknowledge that
this does not necessarily imply positive evidence to support it either. Nevertheless, the proper
corroboration or refutation of this delicate point is out of the scope of the present work. Finally,
as will be clear below, a great amount of useful information to characterize the 0–1 test can be
obtained by inspecting the (ξ, η)-trajectories defined by equation (4), which are independent
of the method, either regression or correlation, used to obtain the corresponding K values.
Therefore, in the rest of this work we will work exclusively with the original 0–1 test, which is
simpler and has the advantage that its performance has been assessed in more cases, as already
mentioned in the introduction, than the modified one.

3. The model

The Hamiltonian model we are considering can be written, in terms of dimensionless variables,
as

H =
N∑

i=1

[
p2

i

2mi

+
1

2
(qi+1 − qi)

2 +
1

4
β(qi+1 − qi)

4

]
, (5)

where {mi, qi, pi}Ni=1 are the mass, displacement and momentum of the ith oscillator,
respectively, in a one-dimensional N coupled anharmonic lattice; periodic boundary conditions
are assumed (qN+1 = q1). The value β = 0.1 was used in the computation of most of the
numerical results hereafter reported. Next, the 2N first-order Hamilton equations of motion
were integrated using a third-order bilateral symplectic algorithm [19], which is a high-
precision numerical scheme specially suited for long-time simulations since, with the adopted
value of the rather large time step of 
t = 0.05, it ensures a faithful representation of a
Hamiltonian flow and keeps the total energy E constant within an average fluctuation level
of 
E/E ≈ 10−6 without drift. Such a high precision in numerical integration makes the
outcome of very long runs that are reported in the following reliable. Finally, from a given
initial condition (to be described in the next section) we let the system evolve for about 5 ×
106 time steps in order to avoid any transient effects due to the chosen initial conditions before
the record of the chosen dynamical variable to be studied by the 0–1 test begins.
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4. Initial conditions in the strongly chaotic regime

It is well known that, for high values of the total energy per degree of freedom ε ≡ E/N , the
FPU lattice is chaotic whereas, for small ε values, it behaves as a chain of harmonic oscillators
[20], despite the presence of the anharmonic potential in the Hamiltonian (5). Therefore,
by manipulating the initial conditions, and thus the ε value, a very precise control of the
dynamical regime in which the phase-space trajectory of the system evolves can be achieved.
As a first set of initial conditions we chose, for a lattice of N = 32 oscillators, {pi = 0} and

qi =
N/8∑
k=1

[
ak cos

(
2πki

N

)
+ bk sin

(
2πki

N

)]
. (6)

In this way only the Fourier modes for k � N/8 are different from zero at time t = 0. The main
advantage of this choice is that, since there is no randomness in these initial conditions, the
obtained K value will be entirely due to the intrinsic dynamics of the lattice. After choosing the
{ak, bk}N/8

k=1 values and letting the system evolve for the aforementioned transient time interval,
the position {q1(tα)} and momentum {p1(tα)} time series of the first oscillator in the chain were
recorded. The employed sampling time τ = 1, which is the natural time unit, corresponds to
ten times the smallest time interval available τmin = 2
t = 0.1 for the employed time step
[19]. Furthermore, this τ value is close to the inverse of the fastest frequency of the harmonic
part of equation (5): Tmin = 2π/ωmax ≡ π . Most results hereafter reported will be given in
this unit of time. Finally, a time-series length of N = 6 × 104 natural time units was taken.

For {ak = bk = 3}, which corresponds to an energy density of ε ≈ 13.34, we obtain, for
the position and momentum time series, the corresponding asymptotic values for the mean
square displacement Kq = 0.96 and Kp = 0.95 respectively. Since the ε value corresponds
to a strongly chaotic regime, we conclude that the test is successful. In order to corroborate
these results we repeated the simulations, but with the value β = 0, which renders a harmonic
oscillator lattice. For the choice {ak = bk = 4.3}, which yields ε ≈ 10.3, we obtain
Kq = 6.1 × 10−4 and Kp = 1.2 × 10−4. Thus, the underlying dynamics of the lattice, for
these initial conditions, is well characterized by the 0–1 test.

For the next type of initial conditions we choose the equilibrium value of the oscillators
displacements, i.e. {qi = 0}, whereas the momenta {pi} were drawn from a Maxwell–
Boltzmann distribution at temperature T consistent with a given value of the energy density,
which we set as ε = 10. The random component has a self-evident physical meaning related
to the impossibility of preparing any physical system in a perfectly ordered initial state: at
nonzero temperature some randomness in the initial conditions is unavoidable. The obtained
values are Kq = 0.91 and Kp = 0.93. If again the β = 0 value is taken, we obtain
Kq = 2.4 × 10−3 and Kp = 2.6 × 10−3. No significant difference whatsoever can be detected
with the results of the ordered initial state. Thus we can conclude that, for the parameters so
far employed, the initial conditions have no effect on the results of the 0–1 test.

5. Weakly chaotic regime

For very low ε values the FPU lattice is chaotic, despite the fact that, for very long times, it
behaves as a harmonic oscillator chain, as already mentioned. Therefore, it is important to
verify if the 0–1 test can correctly classify time records obtained in this dynamical regime.
For the time-series length and sampling time so far employed, the 0–1 test, with random
initial conditions corresponding to ε = 0.01, yields Kq = 5.2 × 10−3 and Kp = 5.0 × 10−3,
which implies a signal misclassification. Now, in figures 1(a) and (c) we plot, for N = 2000,
the (ξ, η)-trajectories stemming from the position and momentum time series respectively.
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Figure 1. (ξ, η)-trajectories corresponding to (a) the position and (c) the momentum time series
of a single oscillator of an anharmonic FPU lattice (β = 0.1). (b, d) Same as in (a, c), but for a
harmonic oscillator lattice (β = 0). In all cases N = 2000, N = 32 and ε = 0.01 which, for the
FPU lattice, corresponds to a weakly chaotic regime.

A stochastic-like but bounded behavior is observed in both (ξ, η)-trajectories. Henceforth,
we infer that diffusion in (ξ, η) space is hindered by the low ε value. These results are
inconclusive to unambiguously classify both signals. However, if we compare with the
position and momentum (ξ, η)-trajectories resulting from a simulation with β = 0 (thus
rendering a harmonic chain) and plotted in figures 1(b) and (d), a visual distinction of the
regular and the weakly chaotic case can be made. Therefore, the interpretation of the results
in this dynamical regime could become ambiguous without the comparison afforded by the
regular dynamics behavior of the momentum time series displayed in figure 1(d). Furthermore,
a completely automated application of the 0–1 test, i.e. the sole reliance on the K value
computed from a moderate amount of data, can lead to completely wrong results if it is not
properly complemented with information of the (ξ, η)-trajectory, since K ≈ 0 is obtained for
all cases reported in figure 1.

The reason for the failure of the asymptotic growth rate K to classify the signals
corresponding to a low ε value can be understood in terms of the phase-space structure
as a function of the energy density value [20]. The Hamiltonian of the FPU model can be
written as

H(θ, I) = H0(I) + H1(θ, I), μ ≡ ‖H1‖
‖H0‖ � 1, (7)

where (θ, I) are the action-angle canonically conjugated variables and ‖ · · · ‖ is a suitable
norm. A consequence of the perturbation H1 is that the resonant manifolds n · ω(I) = 0 of
H0 are destroyed for any small μ and are replaced by finite-thickness chaotic layers (n is an
integer component vector and ω is a vector whose components are ωi = ∂H0/∂Ii). As these
chaotic surfaces intersect the constant energy hypersurface for N 
 1, a chaotic network (the
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Figure 2. λ1(t) versus time, measured in natural time units, for a FPU lattice with N = 32 and
energy density ε = 0.01.

Arnold Web) is produced which is everywhere dense in phase space. For high ε values the
resonances are strongly overlapped and microscopic, i.e. phase space, diffusion is allowed
in every direction of phase space. These facts explain the success of the 0–1 test for the
ε = 10 case already studied. In contrast, for low ε values resonance overlapping is drastically
reduced; microscopic diffusion occurs only along resonances and thus is dramatically slowed
down. These facts indeed explain both the K ≈ 0 value and the lack of diffusion of the
(ξ, η)-trajectories for the anharmonic FPU lattice (β �= 0).

To determine the time scale wherein the regular behavior persists, and thus a lower bound
to the time-series length beyond which a correct classification could be expected, we have
computed the largest Lyapunov exponent (LLE) λ1 of the FPU lattice by the so-called standard
method [21]. In figure 2 we report, as an example, λ1(t) in the case N = 32 and ε = 0.01
for random initial conditions. Up until t ≈ 107 the LLE seems to decay toward zero, being
the behavior expected for a nonchaotic system. Then, suddenly at t � 1.2 × 107, λ1 tends to
converge to a nonvanishing value. This dramatic difference can be attributed to the untrapping
of the FPU system from its regular region in phase space by escaping to the chaotic component
of its phase space since, by the Poincaré–Fermi theorem [22], both regions are connected.
Thus, it is possible to define clearly what a trapping time in a regular region of phase space
is; moreover, its numerical determination is unambiguous, as it can be deduced by simply
looking at figure 2. Therefore, it seems highly unlikely that a K ≈ 1 could be obtained with a
time-series length inferior to the trapping time within the phase-space regular region. Indeed,
for N = 5 × 105, the results are Kq = 8.5 × 10−4 and Kp = 1.3 × 10−3. Of course, in
the opposite case it can be validly inferred from figure 2 that the correct classification can be
obtained, but the sheer length of the required signal would render the 0–1 test impractical for
the foregoing situation.

6. Heavy impurity: time-scale separation

From the results presented in section 4 it is clear that the 0–1 test can indeed classify
unambiguously the dynamics of the FPU lattice in the strongly chaotic regime, i.e. for high
ε values, irrespective of the chosen observable. The reason can be inferred from figure 3,
which displays the time evolution of both the position and momentum of the first oscillator of
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Figure 3. Position {q1(tα)} (solid line) and momentum {p1(tα)} (dotted line) time series of the
first oscillator of a lattice with N = 128 and energy density ε = 10, which corresponds to the
strongly chaotic regime. Time is measured in natural units.

a lattice with N = 128 and ε = 10. It can be appreciated that the time scales on which both
dynamical variables evolve are quite similar. Therefore, it is reasonable to assume that both
the position and momentum make an adequate sampling of the phase-space dynamics. An
immediate confirmation is afforded by applying the 0–1 test, which, for N = 6 × 104, yields
Kq = 0.97 and Kp = 0.92, consistent with the known dynamical regime of the chain.

A dramatic difference is obtained if the mass of the first oscillator is increased to
m1 ≡ M = 100 and a lattice of N + 1 oscillators is now taken. In figure 4(a), again for
N = 128 and ε = 10, it is clearly seen that the inertia of the heavy impurity renders the time
evolution of its position q1 ≡ Q quite differently to that of its conjugate momentum p1 ≡ P .
In the displayed time interval the momentum value experiences many changes whereas the
variations in the position are slower. Thus, the time scales associated with the position data
are much longer than the length of the data set itself, as can be seen in figure 4(b), which
displays the same position time record of figure 4(a), but on a larger time scale. This time-scale
difference has a strong effect upon the results of the 0–1 test since, for the position time series
with N = 105, a value Kq = 0.28 is obtained, clearly inconsistent with the chaotic dynamics
of the lattice. However, for the momentum Kp = 0.95, a consistent result is obtained since it
is the fast variable and thus the ‘correct’ observable.

Under these new conditions, for the position time series the sampling time so far employed
is too small, which implies data oversampling [16]; an immediate solution, which is suggested
by the comparison of the results in figures 4(a) and (b), is to take a coarser sampling time,
and thus a longer time-series length. For example, if τ = 10 (i.e. 10 time units) and N = 105

data points, extracted from a time series of length N = 106, are employed, the result for the
position time series is Kq = 0.61, consistent with the chaotic dynamics of the system. A more
refined method to obtain the optimal sampling time is to use the first minimum of the mutual
information [4]. For the employed data set this method yields τ = 30, which is rather close
to that already taken.

An observation worth making at this point is that the results of figure 4 suggest that data
oversampling can only be invoked as a way to correct data misclassification when there is an
underlying physical mechanism responsible for it. The time series associated with the position
of the heavy impurity plotted in figure 4(a) is oversampled because the time evolution of this

8
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Figure 4. (a) Position {Q(tα)} (solid line) and momentum {P(tα)} (dotted line) time series of a
heavy impurity with M = 100 coupled to an oscillator lattice of N = 128 and ε = 10. (b) Same
position time series as in (a), but displayed on a larger time scale. Time is measured in natural
units.

variable occurs on a much slower time scale than that associated with the momentum of that
same oscillator, as well as with the rest of the degrees of freedom of the system. However, for
the weakly chaotic regime studied in section 5 this mechanism is completely absent, a fact that
renders the plots of both the position and momentum of the first (or any other) oscillator in the
homogeneous, i.e. uniform mass, case (not shown) for ε = 0.01 virtually identical, except for
the vertical scale, to those corresponding to the strongly chaotic regime depicted in figure 3
with ε = 10. Thus, the absence of a heavy impurity avoids time-scale separation altogether,
independently of the dynamical regime, either regular or chaotic, of the system.

However, employing a coarser sampling time, and hence a longer time series, can hardly
be considered a general solution to obtain the correct K value. The reason is that the feasibility
to generate longer data sets to overcome the oversampling issue, and thus avoid the apparent
misclassification, cannot be guaranteed in general. To address this point we will perform a
detailed analysis of the K dependence on both the system size N and time-series length N
for the position of the heavy impurity and a fixed sampling time of τ = 1 which, as already
explained, is the natural unit of time. The main reason for retaining this sampling time is
that generating a long time series will always be necessary, irrespective of the sampling time
employed later on to avoid oversampling, as the aforementioned example clearly highlights.
Furthermore, with τ = 1 and an even longer time-series length, consistent values of the
asymptotic growth rate can be obtained. Again for the already considered example, with
N = 6 × 106 we obtain Kq = 0.55, which correctly classifies the signal.
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Figure 5. Asymptotic growth rate K versus position time-series length N for a heavy impurity
with M = 100 coupled to an anharmonic oscillator lattice with ε = 10 for various system sizes:
N = 32 (solid line), 64 (dashed line), 128 (dashed-dot line) and 256 (dotted line). The horizontal
dashed line indicates the K = 0.5 value.

Figure 5 presents the results of the dependence of K on N for various N values. As can be
appreciated, for small lengths the 0–1 test yields Kq ≈ 0, irrespective of the oscillator number
N. However, as the length of the employed time series is increased, Kq → 1, albeit at a rate
that rapidly diminishes as the system size N increases, thus making an automated application
of the test seemingly unfeasible. Although it is also clear from the figure that, if a sufficiently
large time series is employed, the correct K value can always be obtained for this case; this
option becomes increasingly impractical as N increases. However, to explore the possibility
of an automated application, notwithstanding the information rendered by visual inspection
of the plot K versus N in figure 5, it is necessary to determine the N dependence of the critical
time-series length N beyond which K correctly classifies the signal. Such a dependence has to
be weak enough to allow the possibility of an automated application of the 0–1 test.

It is clear from figure 5 that the time-series length N required to obtain a correct
classification of the signal grows as the system size N increases. To obtain an unambiguous
K value that could make an automated application of the test feasible, a lower bound to the
asymptotic growth rate K has to be established. If we consider that K = 0.5 is the minimum
value needed to unambiguously consider the underlying dynamics as chaotic, then we can
define τR as the time-series length needed to attain the aforementioned K value. In figure 6,
τR is plotted as a function of the system size for the N values depicted in figure 5. We
obtain a strong system size dependence of the form τR ∼ N1.9, a result that indicates the
unfeasibility to obtain data for larger system sizes. The aforementioned scaling, although
not highly accurate due to the small data set employed, is nevertheless rendered plausible
by the systematic behavior of K as a function of N depicted in figure 5. Furthermore, there
is no reason to believe that the already noted tendency will be modified for larger N values.
If we extrapolate the relaxation time to the case of a lattice of N = 300 000 oscillators, we
find τR ≈ 1.3 × 1012 (as indicated by an asterisk in the same figure). Therefore, for very
large lattices the position time series would have to be extremely large (and prohibitively
expensive to compute) in order to classify the signal as chaotic by means of the 0–1 test with
the above-defined criterion.
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Figure 6. Time-series length τR required for K, computed from the position time series of a heavy
impurity of M = 100 coupled to an anharmonic oscillator lattice, to reach the value 0.5 versus
system size N with ε = 10. The asterisk represents the extrapolation of the relaxation time to the
case N = 300 000.

Since for the case of a low ε value and a homogeneous (uniform mass) lattice a simple
inspection of the (ξ, η)-trajectory was helpful to classify the considered signal, we proceed
to corroborate if this strategy remains useful for the new conditions under study. In figure 7
we present the (ξ, η)-trajectories, for N = 2 × 104, corresponding to the (a) position and
(c) momentum time series of the heavy impurity for a lattice with N = 256, ε = 10 and
M = 100. In the first case the slow variable yields an apparent regularity, whereas in
the second the obtained unbounded and diffusive-like behavior is a clear signature of the
underlying chaotic dynamics. In figures 7(b) and (d) we plot the same (ξ, η)-trajectories, but
for β = 0, which correspond to a harmonic lattice. The behavior for the position time series is
indistinguishable from the corresponding behavior in the chaotic regime. For the momentum
time series, the situation is drastically different: no unbounded, diffusive-like behavior is
observed whatsoever. Thus, the test yields a misclassification (due to the short length of the
employed time series, as inferred from the results of the last paragraph) of the position signal
stemming from a chaotic dynamics, whereas for the corresponding momentum time series a
correct classification is obtained both by direct inspection of the (ξ, η)-trajectory and with the
asymptotic growth rate, since Kp = 0.83 in this case (K ≈ 0 in all other instances). Our
next objective will be to corroborate if the aforementioned results remain valid for the largest
system size considered: N = 300 000.

7. Large system size limit and Brownian motion

If a heavy impurity is embedded in the oscillator lattice, large N values are unavoidable for
a number of reasons. The first one is that only in this limit are the heavy impurity and
the oscillator lattice in thermal equilibrium. To meet this condition the mean kinetic energy
〈KBP〉t ≡ 〈P 2/M〉t of the heavy impurity (where 〈· · ·〉t means temporal average) has to be
approximately equal to the mean temperature Tcin ≡ 〈 ∑N

i=1 p2
i

〉
t

of the oscillator chain, which
plays the role of a thermal bath. In figure 8 we present the time evolution of the aforementioned
variables for large and small lattices starting from the random initial conditions described in
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Figure 7. (ξ, η)-trajectory corresponding to the heavy impurity (a) position and (c) momentum
time series with a value of β = 0.1 in both instances. (b, d) Same as in (a, c), but for a harmonic
oscillator lattice (β = 0). M = 100, N = 256, ε = 10 and N = 2 × 104 (although a smaller
number of points is displayed for clarity) in all cases.

section 3 during the time interval before the recording of the position and momentum time
series begins. It can be observed that only in the case of a large lattice is the thermal equilibrium
within the depicted time scale properly established, whereas for the small lattice a metastable,
non-thermodynamic state is reached.

The second and more important reason for taking large N values is because, after thermal
equilibrium is reached, it has been explicitly shown that, for the ε values so far considered
and N = 300 000, the heavy impurity performs Brownian motion [11] and can thus be rightly
termed BP. Furthermore, it has also been shown that the dynamics of the lattice is not affected
by the presence of the impurity [23]. Finally, it has also been shown that the transition between
weak and strong chaos can be detected by applying the standard techniques of nonlinear time-
series analysis of [4] to the momentum time series of a heavy impurity coupled to a FPU
lattice of N = 300 000 light oscillators [24]. Henceforth, the 0–1 test will be applied to a BP
position time record of length N = 2 × 105 after equilibration.

From the above presented evidence it is clear that this one-dimensional microscopic model
is the simplest one that captures the essential details of the full three-dimensional Brownian
motion in fluids. Therefore, it is physically meaningful to compare the results obtained by
applying the 0–1 test to the position time series of the BP of this simple model to those of
actual experimental records. The most precise available data are those obtained in 1998 by
Gaspard et al [12] from the observation of the quasi-two-dimensional Brownian motion of a
colloidal particle, which has a diameter of 2.5 μm, suspended in deionized water at 22 ◦C.
In this case the time series {Q(tα)} corresponds to the time record of the x component of the
position, measured in μm, of the colloidal particle with a sampling time of τ = 1/60 s and
N = 145 612. See [25] for further experimental details.

The (ξ, η)-trajectories obtained from the artificial and experimental time series are
displayed in figures 9(a) and (b), with computed values of K = 3 × 10−3 and K = 2 × 10−2
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Figure 8. (a) Average temperature (continuous line) of a FPU oscillator lattice with N = 128
and average kinetic energy (dashed line) of a coupled heavy impurity with M = 100 versus time
for an energy density ε = 10. (b) Same information as in (a), but for a lattice with N = 300 000
oscillators. Time is measured in natural units.

respectively. As can be readily appreciated, these results seem to indicate a periodic, non-
ergodic dynamics underlying both time series. For the artificial time series this result seems
at odds with the information available from the LLE, λ1 = 0.12 for ε = 10, which clearly
indicates that the system is strongly chaotic [20, 23]. In the case of the experimental data, the
power spectrum P(ω) ∼ ω−2 indicates that the motion is of Brownian (stochastic) character
[12]. Therefore, an apparent misclassification of both types of series is obtained.

However, in view of the results already presented in figures 4 and 6 the described
phenomenology can be attributed to a finite-size effect that has its origin in the physical
issue of time scales—the characteristic time scale of a BP’s position is vastly greater than that
corresponding to its momentum, which evolves in a much shorter, i.e. faster, time scale [11].
In fact, for the type of data of which the employed experimental time series is a representative
example, it has been estimated that the necessary number of data points to detect an underlying
dynamics has to be at least ∼1034 [13]. An indirect confirmation of this estimation is afforded
by the additional fact that, for both artificial and experimental time series, no minimum can
be identified in the mutual information, which can be considered as evidence that the ‘correct’
sampling time is indeed much greater than the length of the time series themselves. Therefore,
the results of the 0–1 test are consistent with those of nonlinear time-series analysis, which
are incapable, due also to finite-size effects, to render conclusive evidence of the microscopic
chaos of the thermal bath wherein the BP is embedded.
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Figure 9. (a) (ξ, η)-trajectory obtained from the position time record {Q(tα)}, with τ = 1
and N = 2 × 105, of a heavy impurity with M = 100 embedded in an anharmonic lattice of
N = 300 000 oscillators. (b) (ξ, η)-trajectory obtained from the experimental time record, with
τ = 1/60 s and N = 145 612, of the position of a colloidal particle suspended in water.

For the momentum time series of the BP coupled to a FPU lattice with N = 300 000
and ε = 10, the 0–1 test yields Kp = 0.96, with unbounded, stochastic-like behavior of the
(ξ, η)-trajectory, as can be seen in figure 10. A seemingly correct classification is obtained, in
apparent agreement with the results of figure 7 and the corresponding K values for N = 256.
However, if a harmonic lattice is taken instead (β = 0), again with N = 300 000 and ε = 10,
the result is Kp = 0.86, with a corresponding (ξ, η)-trajectory (not shown) virtually identical
to that displayed in figure 10 for the anharmonic FPU lattice. To explain this seemingly
odd outcome of the 0–1 test in figure 11 we present the results of the dependence of Kp on
N for various N values. It is clear that, for extremely short times, the 0–1 test detects the
stochasticity of the initial conditions (which the test identifies as dynamical chaos; recall that
it cannot distinguish between chaos and stochastic dynamics [1, 6, 15]), whereas for large
times the correct Kp value is obtained. However, it is also clear that as the system size grows,
the time scale wherein the 0–1 test yields Kp ≈ 1 also increases. With a similar extrapolation
to that performed in figure 6 we obtain a time-series length value of 3.8 × 106 for the 0–1 test
to yield a value K ≈ 0.5 with N = 300 000, which is larger by an order of magnitude than the
employed time-series length of N = 2 × 105, the latter being rather close to the length of the
experimental time series. Thus, a misclassification is expected for a short time-series length
such as that currently being employed. Indeed, in the inset of the same figure it is clear that,
for this fixed N value (larger values become increasingly impractical to obtain as the system
size approaches N = 300 000), the Kp value grows steadily, from Kp ≈ 0 to 1 as the system
size N increases.

8. Discussion and conclusions

The first assertion that can be made from our results is that the value of the asymptotic growth
rate K, computed from a data set of moderate length, is not in general a reliable indicator
of the underlying dynamics of the FPU lattice. For the homogeneous (uniform mass) case
with a low ε value, i.e. weakly chaotic regime, K ≈ 0 (with β = 0.1), whereas the LLE is
λ1 ≈ 1.8×10−6 �= 0. In the case of the momentum time series of a heavy impurity coupled to
a harmonic lattice (β = 0) K ≈ 1. Thus, we have provided two explicit examples for which
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N = 2 × 105, of a heavy impurity with M = 100 embedded in an anharmonic FPU lattice of
N = 300 000 oscillators for strong chaos, i.e. ε = 10.
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Figure 11. Asymptotic growth rate K versus momentum time-series length N of a heavy impurity
embedded in a harmonic lattice for a system size of N = 4096 (continuous line), N = 8192
(dashed line) and N = 16 384 (dashed-dot line). Same M, ε and τ values as in figure 10. The inset
displays, for the same system, K versus N for a fixed time-series length of N = 2 × 105.

the variable K erroneously classifies the considered signals. These results seem to suggest
that the systems studied in [1] were not complex enough to highlight the limitation of K as a
proper classifying variable that stems from our results obtained with the FPU lattice.

It was explicitly mentioned in [1], and further stressed in [6, 15, 16], that visual inspection
of the plot in the (ξ, η) plane is effective to distinguish between regular dynamics and chaos.
Our results in figure 1(d), where a regular and bounded (ξ, η)-trajectory is obtained for a
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harmonic chain, and those in figures 7(c) and 10, where unbounded and diffusive-like behavior
is present for an anharmonic FPU lattice, seem to support the aforementioned claim. However,
it has to be stressed that, for the cases depicted in figures 1(a) and (c), the correct classification
could be obtained only because there was additional information available, namely the results in
figures 1(b) and (d), to make the crucial comparison between two different dynamical regimes.
With just the results of figures 1(a) and (c), and no information whatsoever about their origin,
there is no way to determine the dynamical regime corresponding to each. More explicitly,
each of the plots shown in figures 1(a) and (b) for position time series could be interpreted as
stemming from a regular dynamics, even though the first one corresponds to a weakly chaotic
regime. Only comparing the results for the momentum time series, figures 1(c) and (d),
could the proper classification be performed. Finally, the diffusive-like behavior displayed in
figure 10 for the anharmonic FPU lattice was also obtained for the case of a harmonic lattice,
being the result of the insufficient time-series length employed in the latter case, as inferred
from figure 11. Thus, within the time scales studied, the 0–1 test renders inconclusive results
for all considered situations. Furthermore, it can be said that, in general, there is no guarantee
that the test works without additional information concerning the considered system.

Nevertheless, it could be argued that all of the above problems can always be solved by
taking a longer time-series length, since, as argued in [1] and [16], from the results of [17] and
[26] it follows that, in principle, the 0–1 test works with probability 1 as N → ∞. However,
in any practical situation, such as the one currently being addressed, only a finite number
of data points is available (a situation especially clear for experimental series) and thus the
issue of time scales wherein the 0–1 test is valid becomes unavoidable. The estimation of the
required times to obtain the correct K value for a system size of N = 300 000, inferred from
figures 6 and 11, is large enough to clearly render the 0–1 test impractical for the considered
setup. This situation is specially unsettling since, for that very same system size N, the LLE
has been computed for the ε values herein considered [23].

From the above discussion it would not be entirely correct to infer that the 0–1 test
is invalid; the most appropriate conclusion to be drawn from our results would be that
the test has some important limitations that were not previously noted and that reduce its
range of applicability. Furthermore, we can conclude that, due to its inefficiency in probing
the Hamiltonian chaos of the FPU lattice, in general the 0–1 test is not a useful tool for
exploratory purposes in the case of data with no a priori knowledge of the underlying
dynamics. Nevertheless, it is also important to stress that the main limitation of the
0–1 test herein highlighted, i.e. its difficulty to cope with chaos detection (specially in the
weakly chaotic regime) for signals of limited length, is not specific to the 0–1 test, but
is an inherent problem of time-series methods in general. Our results only suggest that,
for systems in the weakly chaotic regime or with dissimilar time scales, its application
is impractical. However, if the question is posed as to whether, in any other situation
different to the aforementioned ones, the 0–1 test can indeed outperform traditional phase-
space reconstruction methods or not, we believe, based on the herein presented analysis, that
the answer can only be provided on a case-by-case basis.
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the authors (MRB) wishes to thank M C Nuñez-Santiago for her comments and suggestions.
Financial support from CONACyT, México, is also acknowledged.
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